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The coherence scale of heavy fermion systems is the onset temperature of the Kondo singlet formation. We
show by studying the two-impurity Anderson model that this scale strongly deviates from the single-ion Kondo
temperature in the presence of Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction. It scales as the RKKY
interaction or the single-impurity Kondo temperature when either of them becomes dominant. This can be
understood as a two-stage Kondo process, the formation of a partially screened Kondo state at the coherence
scale, and the formation of coherence (local) Fermi liquids at another lower energy scale. The latter is due to the
competition between a fully screened Kondo state and the inter-impurity spin singlet state. Relevance of these
energy scales to heavy fermion systems is also discussed.

PACS numbers: 75.20.Hr, 71.27.+a, 71.10.Hf

Recently there has been much debate on the origin of the
coherence scale Tcoh for heavy fermion systems, which char-
acterizes the evolution of the local or itinerant nature of the
strongly interacting f -electrons [1, 2]. This scale is mani-
fested in various thermodynamics, transport and magnetic re-
sponses measurements, for instance, the entropy S(T ) = R ln2
for T ≥ Tcoh. Traditionally, it is associated with the single-ion
Kondo temperature T 0

K , below which, localized f -electrons
form a Kondo-singlet resonance state with conduction elec-
trons at the chemical potential and becomes itinerant to form
a heavy Fermi liquid band. However, analysis on a group of
heavy fermion materials exhibiting quantum critical behaviors
reveals that it is rather associated with the Ruderman-Kittel-
Kasuya-Yosida (RKKY) interaction I, which is the spin ex-
change interaction between magnetic ions [1]. A solution to
this discrepancy relies on the understanding of the effect of
RKKY interaction on the Kondo singlet formation. While the
associated lattice models for heavy fermion systems are dif-
ficult to solve, the two-impurity Anderson or Kondo model
provides a minimal setting to study such a competition ef-
fect. An antiferromagnetic (AFM) RKKY interaction (I > 0)
favors an inter-impurity spin singlet state between local mo-
ments against the formation of Kondo singlet state. Previous
studies have been focused on the associated quantum phase
transition or crossover between these two distinct states [3–
11]. In the particle-hole symmetry case, a low energy scale
is uniformly suppressed to zero when the ratio I/T 0

K is tuned
to a critical value, indicating a continuous phase transition
[3]. Without particle-hole symmetry, a parity splitting term
is found to smear out the sharp transition behavior [10, 11].
However, the characterization for all the energy scales present
in this system, and therefore a complete interpretation for the
transition are still lacking.

In this Letter, we adopt the numerical renormalization
group (NRG) method [12] to study the two-impurity Ander-
son model, with a focus on identifying and characterizing all
the energy scales from the T = 0 dynamical quantities, such
as the single-particle Green’s function, uniform and staggered
spin susceptibilities. We show results on two systems: one
with the fixed T 0

K and tunable I and another for two impurities
sitting on nearest neighbor sites of a real lattice. In the latter

system, the generated I is positive and the ratio I/T 0
K is tuned

by the hybridization between the local orbitals and conduction
electrons. We find that a two-stage Kondo process, through
a partially screened Kondo state, is very important in under-
standing the phase transition. Accordingly, there are in gen-
eral two energy scales present, the coherence scale Tcoh as the
crossover from the high temperature free moment state with
the impurity entropy S = 2ln2 to the partially screened Kondo
state with S = ln2, and a lower energy scale TFL as onset of
coherent Fermi liquid behaviors. In the first system, TFL is
associated with the energy gap T ∗ between the inter-impurity
spin singlet state and the triplet state, which is also the onset
for either the full Kondo resonance or the inter-impurity spin
singlet state where S = 0 for both states. In the second system,
a parity splitting term Tm, which generates Kondo resonance
at the chemical potential, is present and determines TFL as it
is in general bigger than T ∗ when I ∼ T 0

K . However, Tcoh has
the same behavior in both systems: it is determined by either
I or T 0

K when whichever is dominant while a value higher than
both when I ∼ T 0

K . We argue that this high energy scale per-
sists in the lattice model. It indicates that in quantum critical
metals, where I > T 0

K is suggested, I serves as the coherence
scale, or the onset scale for the formation of partial Kondo
screening. The magnetic phase transition relies on additional
competing effects involving the scales T ∗ and Tm.

The Hamiltonian for the two-impurity Anderson model can
be written as

H = ∑
kσ

εkc†
kσ

ckσ +
1√
N ∑

kσi
(Vkeik·ric†

kσ
fiσ +h.c.)

+ ∑
iσ

ε f f †
iσ fiσ +∑

i
Un f i↑n f i↓ , (1)

where i = 1,2. This describes two interacting local orbitals fiσ
(Anderson impurities) in hybridization with a non-interacting
conduction electron band ckσ with the strength Vk at each im-
purity site ri. The local orbitals have the local energy level
ε f and onsite Coulomb interaction U . In the single occu-
pancy limit, this model can be mapped into a two-impurity
Kondo model by a canonical transformation [11]. It is con-
venient to take linear combinations of the local orbitals in
terms of even or odd parities with respect to their center



2

f(e,o)σ = ( f1σ ± f2σ)/
√

2 while the fluctuations due to con-
duction electrons can be casted into two channels with the hy-
bridization functions Γpσ(ω),

Γp=(e,o)(ω) = −1
2

Im
[

1
N ∑

k

V 2
k |eik·r1 ± eik·r2 |2

ω− εk + i0+

]
. (2)

This problem is amenable to the numerical renormalization
group method, which iteratively solves the problem by grad-
ually approaching low energies in logarithmic scale. From
the NRG spectrum, we can calculate the dynamical quanti-
ties, GAB(ω) = −i

R
∞

0 dteiωt〈[A(t),B(0)]±〉, in particular, the
Green’s function G f pσ with A = B† = fpσ, the uniform and
staggered spin susceptibilities, with A = B = (S1z + S2z)/

√
2

and (S1z − S2z)/
√

2, respectively. For these quantities, we
adopt the recently developed complete-Fock-space method
[13], which conserves the total spectral weight and has better
accuracy in the intermediate and high energy range. Details
of our calculation will be presented elsewhere [14].

We consider two systems of interest, isolated impuri-
ties (with |r1 − r2| being infinite), and impurities sitting
on nearest neighbors (that is, separated by the lattice con-
stant a), respectively. We assume Vk = V and a three-
dimensional tight-binding dispersion of conduction electrons
εk = −2t ∑

3
i=1 coskia. We set 6t = 1 as the energy unit. For

these two cases, the hybridization functions can be well repre-
sented by Γe,o(ω) = Γ0 and Γe,o = Γ0(1∓ω) near the chemi-
cal potential, where Γ0 ∼ ρ0V 2 and ρ0 is the conduction elec-
tron density of state. For simplicity, we adopt these forms for
the whole band in our calculation.
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FIG. 1: (color online) Spectral functions (A f ), real and imaginary
parts of the spin susceptibilities as functions of the energy for vari-
ous values of the RKKY interaction in the isolated impurities case.
Both uniform (χ) and staggered (χa) are shown in the same fig-
ure, and represented by dotted and solid lines, respectively. Here
Γe = Γo = 0.045π and particle-hole symmetry is assumed with U = 2
and ε f = −U/2. While only the positive energy range is shown,
quantities in the negative energy range are symmetric or antisymmet-
ric accordingly. The spectral function is also symmetric for different
parities and spins in this case.

In Fig. 1, we show the results of the spectral function

A f (ω) = −ImG f (ω)/π, uniform (χ) and staggered (χa) spin
susceptibilities for the isolated impurities case. We find that
χ = χa (curves labeled with I = 0), which indicates the two
impurities indeed appear as two separate Kondo scatterers
without any correlation 〈S1zS2z〉 = 0. Below the orbital level
|ε f | or ε f +U , there is only one energy scale present in all
these quantities, i.e., the single-ion Kondo temperature, be-
low which A(ω) ≈ 1/(πΓ0) as the Kondo resonance and the
spin susceptibilities take the (local) Fermi liquid forms. From
χ′(0) = 1/(4T 0

K ), we determine T 0
K = 1.02× 10−3, which is

consistent with the energy where dynamical quantities change
behaviors. To turn on the correlations, we include an explicit
RKKY term IS1 ·S2. Upon increasing I for I > 0, the spec-
tral function firstly increases to about half weight at an en-
ergy scale T ∗K around T 0

K , then either increases again to the
full weight or decreases to 0 at a lower energy scale T ∗. T ∗

is uniformly suppressed to 0 at Ic ≈ 2.3T 0
K , which is consis-

tent with the two-impurity quantum critical point obtained
earlier [3]. In the uniform spin susceptibility, only the high
energy scale T ∗K is present, this is manifested as the peak po-
sition in the imaginary part, under which χ′′(ω) ∼ ω; also as
χ′(0) = 1/(4T ∗K ). In the staggered spin susceptibility, both en-
ergy scales are present. χ′′a ∼ω when ω < T ∗ while χ′′a ∼ const
when T ∗ < ω < T ∗K . The real part χ′a(0) ∼ 1/T ∗, which
becomes divergent as T ∗ → 0. Two energy scales are also
present in thermodynamics calculations [10, 15], where the
impurity entropy evolves from 2ln2→ ln2→ 0 at T ∗K and T ∗,
respectively.

The two-energy-scale scenario signifies a two-stage Kondo
process [16], i.e., as energy (or temperature) is lowered, the
system has to go through an intermediate state existing within
T ∗ < ω < T ∗K , which is also the quantum critical state for
T ∗ = 0. From the analysis on the NRG spectrum, also sug-
gested by the conformal field theory [6] and Bosonization
method [7, 9], this state is governed by fluctuations between
two almost degenerate states, the spin singlet configuration
of two local orbitals and one of the triplet configurations,
| ↑↑〉+ | ↓↓〉. These two states form a doublet and can be rep-
resented by local fermion operators d and d†, with d†d = 0,
1 accordingly. In the Bosonization approach[9], it is found
that only one combination (or one Majorana fermion) couples
to the extended fermions, (ψs f (0)−ψ

†
s f (0))(d + d†), where

ψs f is the spin-flavor degree of freedom. This indicates that
only half of the impurity spins is Kondo-screened with the
entropy ln2. The Majorana fermion is also responsible for
the divergent staggered spin susceptibility and non-Fermi liq-
uid behaviors. [We also notice that the Green’s function of d
is consistent with our numerical calculation that −ImΣ ≈ Γ0
(not shown) and A f ≈ 1/(2πΓ0).] A finite (Ic− I)d†d acts as
the gap between the doublet which suppresses this type of ex-
citations. Depending on whether the triplet or singlet configu-
rations become the ground state, the system either becomes a
full Kondo resonance state (Kondo singlets) or a pseudo-gap
(inter-impurity spin singlet) state to further reduce the entropy.
Both states are Fermi liquid fixed points with the scattering
phase shifts (for each channel) δ = π/2 or 0 while the leading
irrelevant operators lead to Fermi liquid behaviors. Therefore,
T ∗ is the characteristic scale for this gap and acts as the (co-
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herent) Fermi liquid temperature TFL. Though T ∗ is in fact a
pseudo-gap scale in inter-impurity spin singlet phase, we find
that χ” and χa” are linear in ω, and A f ∼ω2, which distinguish
this phase from the free spin state.

In another aspect, we can associate T ∗K as the coherence
scale Tcoh, because it indeed indicates the onset of Kondo sin-
glet formation, though to a partially screened state. As I in-
creases, Tcoh becomes slightly bigger than T 0

K (in comparison,
Tcoh decreases from T 0

K when I < 0) and eventually scales as
I when I � T 0

K , e.g, I = 0.01 in Fig. 1. In the latter limit,
while the inter-impurity spin singlet is the ground state which
doesn’t favor Kondo coupling, at the energy scale I, excita-
tions to spin triplet become possible while the Kondo res-
onance emerges. This can also be evidenced from the spin
susceptibility, which has a Pauli term superposed on the Van
Vleck form.
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FIG. 2: (color online) Spectral functions (A f ), real and imaginary
parts of the spin susceptibilities as functions of the energy for vari-
ous values of hybridization constant V for impurities sitting on near-
est neighbors. The even and odd channels in A f are represented
by solid and dashed lines, respectively. The representations for the
spin susceptibilities are the same as in Fig. 1. Here, we choose
U = 2 and ε f =−U/2. Together with Γe(−ω) = Γo(ω), the relation
Ae,o(ω) = Ao,e(−ω) is satisfied.

We now turn to the second system, i.e, the two impurities
are sitting on nearest neighbors. With Γe,o = Γ0(1∓ω), we
find that an AFM RKKY interaction is automatically gen-
erated I ≈ 0.200ρ0J2

K , where the Kondo coupling ρ0JK =
8Γ0/(πU)∼ ρ0V 2/U . Because the single-ion Kondo temper-
ature T 0

K has a different dependence on JK , we can tune the
ratio of I/T 0

K by tuning JK with the hybridization constant V
(we keep ρ0 and U fixed constants). In Fig. 2, we show the
results of spectral function and the spin susceptibilities. As V
increases, I/T 0

K decreases (see also Fig. 3). Similar to the first
system, there are also two distinct phases in two limits: one
is the full Kondo resonance state with finite spectral weight
at the chemical potential, and another has almost vanishing
spectral weight controlled by the inter-impurity spin singlet
ground state. However, the sharp transition is replaced by a
smooth crossover while the divergence in the staggered spin

susceptibility is absent. We can still in general identify two
energy scales, a high energy scale where A f (ω) and χ′′ begin
to develop peaks (below ε f +U), and a low energy scale be-
low which A(ω) becomes a relative constant and χ′′ ∼ ω. The
high energy scale has the same origin as Tcoh in the first sys-
tem and has the same dependence on I/T 0

K . The low energy
scale describes a Fermi liquid temperature TFL, below which
Fermi liquid behaviors develop. But it has different behavior
compared to T ∗ in the first system.
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FIG. 3: (color online) The coherence scale as a function of the
hybridization constant V . The low energy scale TFL as well
as T 0

K and I are also plotted. T 0
K is determined from calcula-

tions by assuming Γe,o = Γ0, and is fitted (in blue dashed line)
by T 0

K = (0.5/ρ0)exp[−(1/ρ0JK)+ (1/2) ln(ρ0JK)+ 1.58(ρ0JK)2].
The black dashed line denotes the RKKY scale I = 0.15ρ0J2

K .

We plot Tcoh and TFL as functions of V in Fig. 3. Also plot-
ted are the RKKY scale I and the single-impurity Kondo tem-
perature T 0

K with fitted curves. Here T 0
K is numerically deter-

mined by assuming Γe,o = Γ0 (as in the first system) and well
fitted by the standard formula. Indeed I and T 0

K are monotonic
functions of V and their ratio I/T 0

K decreases due to the dif-
ferent dependences on JK . This phase diagram resembles the
Doniach’s phase diagram [17] for the heavy fermion lattice as
I/T 0

K is tuned in the same fashion. We find that Tcoh scales as
either I or T 0

K for I/T 0
K � 1 and I/T 0

K � 1, respectively. When
I/T 0

K ∼ 1, Tcoh is slightly enhanced from T 0
K . This is consis-

tent with the results for the first system. From the analysis
on experimental data [1], the heavy fermion materials on the
verge of magnetic transitions are suggested to fall in the region
JK = 0.15 to 0.20, corresponding to V = 0.26 to 0.31 in Fig.3.
Indeed, Tcoh is determined by the RKKY interaction I in this
range where I > T 0

K . In the two-impurity model, I in this range
is bigger than the critical value for the two-impurity quantum
critical point and a pseudo-gap state is expected. However,
we observe that the spectral function is still finite at the chem-
ical potential with a large TFL, which still resembles a heavy
Fermi liquid. This relies on the origin of TFL in this case.
Although we assume ε f = −U/2, the particle-hole symme-
try is broken in each even and odd channels. As a result,
a potential scattering is present V 0

12(c
†
eσceσ − c†

oσcoσ) where
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cpσ ∼ ∑k ckσ(eik·r1 ± eik·r2). We also notice that such a par-
ity splitting term can be originated from a hybridization (hop-
ping) term t f ( f †

1σ
f2σ + h.c.) or be generated by a non-parity-

splitting potential scattering [11]. In the Bosonization method
[9], it generates a relevant interaction (ψ f (0) + ψ

†
f (0))(d −

d†), where ψ f is the flavor degree of freedom. This interac-
tion, combining with (ψs f (0)−ψ

†
s f (0))(d + d†), is responsi-

ble for generating Kondo resonance and finite spectral weight
at the chemical potential. We denote the Fermi liquid temper-
ature due to this interaction as Tm. Near the quantum critical
point, T ∗ ∼ |I− Ic| becomes vanishing while Tm remains fi-
nite: the latter determines the Fermi liquid temperature TFL.
Its dependence on V in this system is plotted in Fig. 3. There
are also other efforts to determine this scale from the particle-
hole asymmetry parameters [10, 11]. Between TFL and Tcoh,
there is still an energy range where the intermediate state ex-
ists and the system displays non-Fermi liquid behaviors (we
also checked this from the self-energy).

A self-consistenly solved two-impurity model can provide
a solution to the lattice model within the cluster dynamical
mean field theory (CDMFT) approach, where the even and
odd parity degrees of freedom correspond to the two momen-
tum points, (0,0,0) and (π,π,π), respectively. From the above
results, we would like to make some general arguments on
the heavy fermion systems. The RKKY interaction, associ-
ated with bare parameters such as V and U , should always
be present as an energy scale in the low energy physics. If
I > T 0

K , the coherence scale is found to be associated with

I as an onset of some partial screened Kondo state. There-
fore, we expect the lattice coherence scale has the same origin
and the same dependence on I. However, it is not directly re-
sponsible for the magnetic quantum phase transition, which
instead should be reflected in another low energy scale, due to
the competition between further Kondo screening and form-
ing magnetic ordered state: either of them can reduce the en-
tropy. The two-energy-scale picture has been indeed found in
experiments. For the low energy scale, we would like to bring
attention the energy scale Tm, which has been neglected in pre-
vious studies on the heavy fermion quantum critical point. It
has a different origin than T ∗ and helps to stabilize the heavy
fermi liquid state. In the self-consistency procedure, this scale
can vanish due to the Kondo exhaustion when the feedback
hybridization functions are not big enough, which is a Mott-
type transition. Another possibility is to properly consider the
long-wavelength spin fluctuations, a singular form of which
can suppress Tm and reveal the criticality associated with T ∗.
Tm also plays an important role in other systems. For instance,
Tm due to the inter-orbital hybridization in two-orbital Hub-
bard model competes in the formation of the Mott gap.
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